
 1

Build-up of the Global Grammar feature structures Lars Hellan, February 2015

In presenting this grammar, we start from the point of a very simple HPSG parser as outlined in the
earlier parts of Sag et al. 2003, and implemented in the grammars g1-g4 in Copestake 2002 (also
known as the ‘LKB ESSLLI grammars’, from their use in ESSLLI courses around year 2000 and
later used in classrooms for introduction to LKB). It functionally covers the kinds of operations
described in section 5 of chapter 1, meaning that valence lists play a crucial role. It also has the
lexeme-word distinction, simple inflectional operations suited for English phrased as ‘lexeme-to-
word’ rules, and some ‘lexeme-to-lexeme’ operations for verbs covering frame alternations. We
then add to this simple grammar, step by step, specifications for linking to semantic roles, for
adding grammatical functions, for analyzing verbal extensions such as morphological causatives,
applicatives and passives, and for analyzing multiverb constructions like serial verb constructions
and con-verb constructions.

1. Resumé of simple HPSG grammar
In this grammar, the AVM for a lexical entry of “eat” will be as follows, exemplifying the type verb
lexeme (the type of the whole AVM is indicated in italics in the upper left corner):

(1)

[]
[]

-
ORTH "eat"
HEAD verb

SPR HEAD noun

COMPS HEAD noun

verb lxm

This is the simplest structure encountered for a verbal sign. A more complex structure is
encountered for inflected verbs, exemplified in (2):

(2)
[]

[]

[]
[]

-3sin -
ORTH "eats"
HEAD verb

SPR HEAD noun AGR 3sing

COMPS HEAD noun

-
ORTH "eat"

ARGS HEAD verb

SPR HEAD noun

COMPS HEAD noun

verb g irule

verb lxm

This construct is analyzed as a word type item with a verb lexeme as daughter (‘ARGS’ stands for
daughters), where the word item is of the subtype verb-3sing-irule, defined as indicated in the
upper half of the AVM, more concisely as:

(3)
verb-3sing_irule :=
%suffix (!s !ss) (!ss !ssses) (ss sses)
word &
[SPR < [HEAD [AGR 3sing]] >,
 ARGS < verb-lxm >].
.
The definition of the type word can be seen in the overview of type definitions in Fig 1 below – as
will be noted, the equal values of mother and daughter are represented by reentrancy. In this type
hierarchy, it is the type synstruc (rendered in boldface) which declares the attributes used in the
above AVMs.

 2

Figure 1 Overview of types in the Simple HPSG grammar

 top

 feat-struc string list

 ne-list null
 [FIRST top,
 REST list]

 pernum pos
 [MOD list]

3sing non-3sing agr-pos verb prep
 [MOD <>] [MOD <[SPR<[]>
 COMPS <>>]]
 noun det
 [MOD <>] [MOD <>]
 synstruc
 [HEAD pos,
 SPR list,
 COMPS list,
 ARGS list]

 lex-item

 word
 [HEAD #1,
 SPR #2,
 COMPS #3,
 ARGS < lexeme &
 [HEAD #1,
 SPR #2,
 COMPS #3]>]

 det-word prep-word
 [HEAD det, [HEAD prep,
 SPR <>, SPR <>,
 COMPS <>] COMPS <[HEAD noun]>]

 det-word-3sing det-word-non-3sing
 [HEAD [AGR 3sing]] HEAD [AGR non-3sing]]

 lexeme

noun-lxm verb-lxm
[HEAD noun & [AGR #1], [HEAD verb,
 SPR < phrase & [HEAD det & [AGR #1]] >, SPR < [HEAD noun,
 COMPS < >] SPR <>
 COMPS <>]>] phrase

 head-initial head-final root
 [HEAD #1, [HEAD #1, [HEAD verb,
 ARGS <[HEAD #1],...> ARGS <synstruc, [HEAD #1]> SPR <>,
 COMPS <>]

 3

A still more complex sign is that of a verbal phrase, exemplified by “eats fishes”, displayed in (4);
here the two items combined by the phrasal rule are at word level – no phrasal combination applies
to lexemes (but can of course apply to phrases).

(4)

[]

[]
[]

[]

ORTH "eats fishes"
HEAD verb

SPR HEAD noun AGR 3sing

COMPS

-3sin -
ORTH "eats"
HEAD verb

SPR HEAD noun AGR 3sing

COMPS HEAD noun
ARGS

-
ORTH "eat"

ARGS HEAD verb

SPR HEAD noun

COMPS HEAD no

verb g irule

verb lxm

[]

- -3sin _
ORTH "fishes"
HEAD noun
SPR

COMPS
,

ORTH "fish"
ARGS HEAD noun

SPR

COMPS un

 −

noun non g irule

noun lxm

The grammar has five phrasal rules, three of them rendered in their tdl [define] formulations:

(5) a. Combining V and Object (instantiated in (4)):

 head-complement-rule-1 := head-initial &
 [SPR #spr,
 COMPS < >,
 ARGS < word &
 [SPR #spr,
 COMPS < #cdtr & [SPR < >] >], #cdtr >].

b. Combining VP and Subject, and N and Specifier:

 head-specifier-rule := head-final &
 [SPR < >,
 COMPS #comps,
 ARGS < phrase &
 #sdtr & [SPR < >],
 phrase &
 [SPR < #sdtr >,
 COMPS #comps] >].

c. Combining a Modifier with its Head:

 head-modifier-rule := head-initial &
 [SPR #spr,
 COMPS #comps,
 ARGS < phrase & #hdtr &
 [SPR #spr,
 COMPS #comps],
 phrase &
 [HEAD [MOD < #hdtr >]] >].

The lexicon of this grammar is as follows:

 4

(6)
the := det-word &
[ORTH "the"].

that := det-word-3sing &
[ORTH "that"].

those := det-word-non-3sing &
[ORTH "those"].

aardvark := noun-lxm &
[ORTH "aardvark"].

dog := noun-lxm &
[ORTH "dog"].

cat := noun-lxm &
[ORTH "cat"].

bark := verb-lxm &
[ORTH "bark",
 COMPS < >].

chase := verb-lxm &
[ORTH "chase",
 COMPS < phrase & [HEAD noun] >].

give := verb-lxm &
[ORTH "give",
 COMPS < phrase & [HEAD noun],
 phrase & [HEAD noun] >].

to := prep-word &
[ORTH "to"].

near := prep-word &
[ORTH "near"].

Developments will improve the format of the lexical entries in:
- expressing valence in the lexical type rather than in a full AVM specification (so, saying that
chase is ‘transitive verb’ rather than specifying it as ‘COMPS < phrase & [HEAD noun] >’)
- using entry identifiers beyond the orthographic form, to distinguish between homonyms and
otherwise multiple entries involving the same form
- having a representation of the meaning of the lexical item.

2. Semantics
As will have been observed, the Simple grammar of section 1 includes no semantics. From the
outline in chapter2, we envisage that at least part of a semantic specification should be introduced
by a feature ACTNTS, for ‘actants’, taking as value the type sit (for ‘situation’), which in turn
declares an attribute ACT0 for the ‘index’ of the situation, a number of ‘participant’ attributes
ACT1, ACT2, ACT3, ACTobl, all with index as their type, signifying the pointer to an individual,
and a feature AKTRT for ‘Aktionsart’. Thus, for a ditransitive verb, the semantic part of the AVM
will look as follows:

 5

(7)
PRED
ACT0
ACT1

ACTNTS
ACT2
ACT3
AKTRT

pred
index
index

synstruc sit
index
index

aktionsart

To technically introduce these configurations in the grammar, we add a type sit under featstruc, with
a declaration of ACT-features organized as follows:

(8) featstruc
 |
 sit
 [PRED pred,
 ACT0 index]
 / \
 act1-rel actObl-rel
 [ACT1 index] [ACTobl index]
 / \ /
 act12-rel act1obl-rel
 [ACT2 index] /
 / \ /
 act123-rel act12obl-rel
 [ACT3 index]
 \ /
 act123obl-rel

These attributes do not indicate specific roles, but reflect role dependency relations, in that whatever
role ACT2 turns out to have, it could not be unfolded in a situation expressed by the verb in question
without there being also a participant having the role of ACT1, and analogously for ACT3 vs ACT2.
This follows the same logic as is used for the attributes ‘ARG1’, ‘ARG2’, etc. in the Matrix
semantic system. ACTobl is whatever is expressed as an oblique argument.

We assume that all syntactic constituents have a referent of one kind or another. NPs are
standardly assumed to refer to individuals, and sentences and VPs to situations (the latter is the view
of 'Situation Semantics', the theory advocated by Barwise and Perry 1980). We may assume that
prepositions and adjectives refer to situations as well, just of a less dynamic kind than many
situations referred to by verbs. The type index in general declares an attribute KIND, abbreviated K,
whose value kind has the subtypes sit and indiv – as displayed below, a further specification added
to figure 1:

(9) featstruc
 / \
 index kind
 [K kind] / \
 indiv sit

The type aktionsart has a limited number of subtypes, one of which is accomplishment. We return

later to a discussion of these types.
The type synstruc will have to accommodate attributes reflecting the specifications now

introduced. The type name itself is also becoming less plausible, since it seems to represent only
syntactic structure. We therefore replace this type name by the type name sign. Thus amended, the
type definition (10a) gives way to (10b) in the type tree in figure 1:

 6

(10)
a. synstruc
 [HEAD pos,
 SPR list,
 COMPS list,
 ARGS list]

b. sign
 [HEAD pos,
 SPR list,
 COMPS list,
 INDX index,
 ACTNTS sit,
 ARGS list]

Now consider the linking between the participant attributes just introduced and the syntactic
constituents representing the participants (attention now being on expressed participants). For any
verb, the referent of its subject will be the value of its ACT1. We can display this as follows
(omitting all other aspects of the structure):

(11) SPR INDX 1

ACTNTS ACT1 1

Similarly, for any object in a single-object construction, its referent will be the value of ACT2:

(12) COMPS INDX 1

ACTNTS ACT2 1

For a ditransitive verb, in turn, the linkages to be defined could be as follows, if we have in mind the
structure of a Germanic verb phrase – the indirect object precedes the direct object, but is logically
dependent on it, and so serves as ACT3 in the semantic structure:

(13)
COMPS INDX 1 , INDX 2

ACT2 2
ACTNTS

ACT3 1

Where should these specifications be introduced in the overall type system? It will be recalled that

as verb-lxm was defined in figure 1, it has an obligatory subject. The required linkage displayed in
(11) could then be added to this definition of verb-lxm. Moreover, if we assume that the linking in
(12) is a standard property of transitive verbs, we can define a type trans-verb-lxm as a subtype of
verb-lxm, with the specification in (12) as what defines the subtype, and correspondingly for a type
ditrans-verb-lxm likewise inheriting from verb-lxm and with the specifications in (13) added, as
suggested in (14):

 7

(14) verb-lxm
 [SPR <[HEAD noun,
 INDX #1]>,
 ACTNTS [ACT1 #1]]

intrans-verb-lxm trans-verb-lxm ditrans-verb-lxm
[COMPS <>] [COMPS <[HEAD noun, [COMPS <[HEAD noun,
 INDX #1]>, INDX #1], [HEAD noun,
 ACTNTS [ACT2 #1]] INDX #2]>,
 ACTNTS [ACT2 #2,
 ACT3 #1]]

With these linkages having been introduced, the lexical entries for the verbs bark, chase and give
in (6) can be amended as follows (using entry identifiers reflecting the valence):

(15) bark_intr := intrans-verb-lxm &

[ORTH "bark"].

chase_tr := trans-verb-lxm &
[ORTH "chase].

give_ditr := ditrans-verb-lxm &
[ORTH "give”].

What is conceivably still missing in these entries is an indicator of the item-meaning of each

lexical item, and therewith an attribute for item-specific meaning. In some of the examples in
chapter 2, we indeed have an attribute PRED used for the value cause-rel, where the latter reflects a
grammatically induced meaning rather than a basic lexical meaning. We leave open what to do
about these for the moment, and so leave the entries in (15) without a PRED specification, but we
nevertheless recognize the need for a PRED attribute, as is present in the AVM schema (7). The
definition of its value pred we hypothesize as a type with cause-rel as one of its subtypes, but we
otherwise say no more about the type pred here:

(16) feat-struc
 |
 pred
 |
 cause-rel

Given that the ACT-features do not represent participant roles, a next question is how participant

roles should or could be represented. We outline one strategy, first illustrated by the following set of
roles, analyzed as subtypes of a type role: agent, patient, theme, beneficiary:

(17) feat-struc
 |
 role
 / / \ \
 agent patient theme beneficiary

The type role will be the value of an attribute ROLE, declared by index; thus, the amended
declaration for index will be:

 8

(18) index
 [K kind,
 ROLE role]

We can now start modeling some semantically based verb types which have been much referred to

in the literature. First, an unaccusative verb is often defined as an intransitive verb with the subject
having the role theme. We can define this type as a subtype of intrans-verb-lxm by adding the
appropriate specification:

(19) intrans-verb-lxm
 |
 intrans-unacc-verb-lxm
 [ACTNTS.ACT1.ROLE theme]

Likewise we can define an agentive intransitive verb, suitable, e.g., for bark:

(20) intrans-verb-lxm
 |
 intrans-agentive-verb-lxm
 [ACTNTS.ACT1.ROLE agent]

As for the other valence types, the verb kick may be said to involve an agent and a patient. The
following would be an inheritance specification providing a lexical type reflecting these roles:

(21) trans-verb-lxm
 |
 trans-affecting-verb-lxm
 [ACTNTS [ACT1.ROLE agent,
 ACT2.ROLE patient]]

For the type of ditransitive represented by give, the following lexical type would serve:

(22) ditrans-verb-lxm
 |
 ditrans-transfer-verb-lxm
 [ACTNTS [ACT1.ROLE agent,
 ACT2.ROLE theme,
 ACT3.ROLE benefactive]]

Introducing roles may thus allow one to represent some common, intuitive notions in a
straightforward manner. However, the manner illustrated is not without problems, as can be
exemplified as follows. ‘Kicking oneself’ may intuitively be conceived as something which should
have index identity between the agent and patient, as in (23):

(23)

SPR INDX 1

COMPS INDX 1

ACT1 1
ACTNTS

ACT2 1

But the structure identity of what follows the reentrancy symbols under ACTNTS will fail for the
structures ‘ROLE agent’ (specifying ACT1) and ‘ROLE patient’ (specifying ACT2).

 9

There are at least three ways of avoiding this problem:
a. Declaring the attribute ROLE by another type than index.
b. Avoiding using reentrancy to represent reflexivity, and rather introduce another ACTNTS relation
(informally called ‘ACTNTS-II’ in (24)) to explicitly state the identity, as in (24):

(24)

SPR INDX 1

COMPS INDX 2

ACT1 1
ACTNTS

ACT2 2

PRED identical - rel

ACTNTS II ACT1 1

ACT2 2

 −

c. Introducing a further attribute inside index to express referential ‘this-ness’, e.g. ‘HAEC’ for
‘haeccitas’:

(25)

SPR INDX 1

COMPS INDX 2

HAEC 3ACT1 1
ROLE agent

ACTNTS
HAEC 3ACT2 2
ROLE patient

On this alternative, the declaration of index thus gets three attributes (where the value type id is a
further subtype of featstruc):

(26) index
 [HAEC id,
 K kind,
 ROLE role]

In the Matrix system, roles are not represented. In the grammar NorSource, built on the Matrix but
using roles, strategy b. is the one used. In TypeGram we for the present assume this strategy as well.

Given these developments, the combinatorial rules in rules.tdl must state that the ACTNTS and

INDX specification of the head daughter is identical to the ACTNTS and INDX specification of the
mother. Likewise, in the definition of word in types.tdl, we need to reenter the ACTNTS and INDX
values of the input lexeme with the ACTNTS and INDX values of the output word.

This completes the first step of introducing a simple semantics in the Simple grammar. We have
introduced a feature space for participants and for participant roles, and linking of these to items
previously present in the grammar. We have noted consequences that these moves have for the
lexical specification of verbs. By now, the grammar will still have the same coverage as Simple
grammar, but each parse will in addition have specifications for ACTNTS and INDX, making it in
principle possible to see which participants link to which NPs. The next section will bring us to the
point where these linkages can be represented in the AVM of the highest constituent in the parse tree.

 10

3. Grammatical Functions
3.1. Modeling Grammatical Functions
Traditional Grammatical Function (GF) notions like 'subject', 'object', 'direct object' and so forth are
not explicitly represented in standard HPSG, only indirectly through their placement in valence lists.
This strategy has a couple of disadvantages:
(a) From the mere order in a COMPS list it is not always easy to decide which GFs are being
represented, and:
(b) Since valence lists are cancelled through combination up through a tree, when one reaches the top
S-node, there is not even an indirect GF representation left. That means that the feature structure of a
full construction gives no information about which GFs are realized inside the construction.

The situation can be remedied in the following way. Attributes for GFs taking signs, not lists of
signs, will be defined, in much the same way as LFG uses attributes for Grammatical Functions.
These GF specifications will be correlated with valence lists of lexical items, but propagated
unchanged up through the combination trees, formally in the same way as the ACTANTS attribute is
propagated up, so that the full construction has a record of the GFs realized. We now present a
procedure for building such a system.

A new attribute will be introduced under the type we have re-labeled as sign, namely GF, with the
value gramfct, a subtype of featstruc. The subtype system under gramfct is what declares the specific
GF attributes – viz. SUBJ, OBJ, GOV, IOBJ, OBJ2, OBL, SPEC. This is done in an analogous way to
how the sit hierarchy is defined (see (8) above). In rendering these definitions, and others below, we
first use the tdl notation, where ‘:=’ means ‘is a subtype of’ ((27a)), and then for visualization, a type
tree ((27b)).

(27)
a. gramfct := feat-struc.

subj-gf := gramfct & [SUBJ sign].
gov-gf := gramfct & [GOV sign].
obj-gf := subj-gf & [OBJ sign].
iobj-gf := obj-gf & [IOBJ sign].
obj2-gf := obj-gf & [OBJ2 sign].
obl-gf := subj-gf & [OBL sign].
spec-gf := gramfct & [SPEC sign].
su-ob-obl-gf := obj-gf & obl-gf.
su-ob-iob-obl-gf := iobj-gf & obl-gf.
su-ob-ob2-obl-gf := obj2-gf & obl-gf.

b. featstruc
 |
 gramfct

 subj-gf gov-gf spec-gf
 [SUBJ sign] [GOV sign] [SPEC sign]

 obj-gf obl-gf
 [OBJ sign] [OBL sign]

ob-gf iobj-gf obj2-gf
 [IOBJ sign] [OBJ2 sign]

 su-ob-obl-gf su-ob-obj2-obl-gf

 su-ob-iob-obl-gf

 11

For double object constructions, some traditions use the terms "direct object" and "indirect object",
others use "first object" and "second object". In the present encoding, "direct object" and "first
object" are represented by the attribute 'OBJ', whereas 'IOBJ' represents 'indirect object', and 'OBJ2'
represents 'second object'. Both of the latter are considered dependent on the presence of 'OBJ', thus,
they will not occur unless there is OBJ occurring. Moreover, 'IOBJ' and 'OBJ2' never co-occur in a
feature matrix. As for the type declaring GOV, namely gov-gf, it does not presuppose the presence of
a SUBJ, whereas obj-gf which declares OBJ, inherits from subj-gf; this is the type relevant for verbal
specification, whereas gov-gf will be relevant for prepositions and adjectives.

Note that the types defined in (27) are not on sign-level – they are one path-slot embedded inside
this type. At sign level, we define the following sub-types of sign according to which GFs they
contain:

(28) subj-sign := sign & [GF subj-gf].

gov-sign := sign & [GF gov-gf].
obj-sign := sign & [GF ob-gf].
iobj-sign := sign & [GF iobj-gf].
obj2-sign := sign & [GF obj2-gf].
obl-sign := sign & [GF obl-gf].
spec-sign := sign & [GF spec-gf].

The type spec-sign will be associated only with nouns, displaying the Specifier constituent of a noun
phrase through the GF 'SPEC'.

3.2. Linking Grammatical Functions to Participant Roles

The type system for GFs now will be linked to semantic specification. The following types inter-relate
these levels of specification:

(29)

su-act1-link := subj-sign &
 [GF.SUBJ.INDX #1,
 ACTNTS.ACT1 #1].
gov-act2-link := gov-sign &
 [GF.GOV.INDX #1,
 ACTNTS.ACT2 #1].
obj-act2-link := obj-sign &
 [GF.OBJ.INDX #1,
 ACTNTS.ACT2 #1].
iob-act3-link := iobj-sign &
 [GF.IOBJ.INDX #1,
 ACTNTS.ACT3 #1].
ob2-act3-link := obj2-sign &
 [GF.OBJ2.INDX #1,
 ACTNTS.ACT3 #1].
obl-actObl-link := obl-sign &
 [GF.OBL.GF.GOV.INDX #1,
 ACTNTS.ACTobl #1].
spec-act2-link := spec-sign & phrase &
 [INDX #2,
 GF.SPEC.INDX #1,
 ACTNTS.ACT2 #2,
 ACTNTS.ACT1 #1].

In terms of these linkages, construction types can now be defined in terms of both GFs and ACTANT
values:

 12

(30) poss-sign := spec-act2-link.
intr-sign := su-act1-link.
intrObl-sign := obl-actObl-link.
tr-sign := intr-sign & ob-act2-link.
trObl-sign := intrObl-sign & tr-sign.
ditr-sign := tr-sign & iob-act3-link.
dbob-sign := tr-sign & ob2-act3-link.
ditrObl-sign := trObl-sign & ditr-sign.
dbobObl-sign := trObl-sign & dbob-sign.
gvmt-sign := gov-act2-link.

This linkage will provide the kind of linking shown in the early part of chapter 1, like in (3),

repeated as (31), now exposed with the relevant type among those defined:

(31)

HEAD

SUBJ INDX 1

GF OBJ INDX 2

IOBJ INDX 3

ACT0

ACT1 1

ACTNTS ACT2 2

ACT3 3
AKTRT

−

ditr sign
verb

sign index

grmfct sign index

sign indexsign
index

sit

aktionsart

It may be noted that the label 'ditr' reflects the presence of the attributes OBJ and IOBJ, whereas
'dbob' (for 'double object') reflects the presence of the attributes OBJ and OBJ2. The type gvmt-sign
(for 'government sign') is a type suited for prepositions, which have a governee, represented by the
attribute GOV, but not in general a subject.

3.3. Linking Grammatical Functions to Valence lists
We next integrate this system of GFs correlated with ACTNTS into the parsing grammar. The parsing
procedure hinges crucially on lexical valence specifications. For lexical correlation of valence lists
and GFs, and in turn participant roles, the following types are therefore defined:

(32)

intr-lex := intr-sign &
 [GF.SUBJ #1,
 SPR < #1 >].
intrObl-lex := intr-lex & intrObl-sign &
 [GF.OBL #1,
 COMPS < #1 >].
tr-lex := intr-lex & tr-sign &
 [GF.OBJ #1,
 COMPS < #1 >].
trObl-lex := intr-lex & trObl-sign &
 [GF.OBJ #2,
 GF.OBL #1,
 COMPS < #2, #1 >].
ditr-lex := intr-lex & ditr-sign &
 [GF.OBJ #2,

 13

 GF.IOBJ #1,
 COMPS < #1, #2 >].
dbob-lex := intr-lex & dbob-sign &
 [GF.OBJ #1,
 GF.OBJ2 #2,
 COMPS < #1, #2 >].
ditrObl-lex := intr-lex & ditrObl-sign &
 [GF.OBJ #2,
 GF.IOBJ #1,
 GF.OBL #3,
 COMPS < #1, #2, #3 >].
dbobObl-lex := intr-lex & dbobObl-sign &
 [GF.OBJ #1,
 GF.OBJ2 #2,
 GF.OBL #3,
 COMPS < #1, #2, #3 >].
gvmt-lex := gvmt-sign &
 [GF.GOV #1,
 COMPS < #1 >].
poss-lex := poss-sign &

 [GF.SPEC #1,
 SPR < #1 >].

At this point, we have supplied the specifications that underlie an AVM like the lowest node in the
analysis tree (38b) in chapter 1, repeated as (33), i.e., an AVM where GF, valence lists and
participant specification are all interlinked:

(33) HEAD verb

SUBJ 3 INDX 1
GF

OBJ 4 INDX 2

SPR 3

COMPS 4

PRED fange-rel

ACTNTS ACT1 1

ACT2 2

Compared to the lexical types defined in (14), repeated, based on ACTNTS specification and

valence lists only,

(14) verb-lxm
 [SPR <[HEAD noun,
 INDX #1]>,
 ACTNTS [ACT1 #1]]

intrans-verb-lxm trans-verb-lxm ditrans-verb-lxm
[COMPS <>] [COMPS <[HEAD noun, [COMPS <[HEAD noun,
 INDX #1]>, INDX #1], [HEAD noun,
 ACTNTS [ACT2 #1]] INDX #2]>,
 ACTNTS [ACT2 #2,
 ACT3 #1]]

the types intr-lex, tr-lex and ditr-lex from (32) above differ in that they also include GF specification,
and so will take precedence over the types in (14). The latter are thus no more included in the
grammar.

 14

In ‘verb’ not being mentioned in the type names in (32), we disentangle frame specification from
POS of the head. In coining verb type names, we rather add ‘v-‘ to the names already defined in (32),
so that instead of (14) we have the verb type definitions (34), and as for lexical entries, we will have
the lexical specifications (35) rather than those in (15) (v-lex being a type defined as having verb as
head):

(34) v-intr-lxm := intr-lex & v-lex.

v- intrObl-lxm := intrObl-lex & v-lex.
v-tr-lxm := tr-lex & v-lex.
v-trObl-lxm := trObl-lex & v-lex.
v-ditr-lxm := ditr-lex & v-lex.
v-dbob-lxm := dbob-lex & v-lex.
v-ditrObl-lxm := ditrObl-lex & v-lex.
v-dbobObl-lxm := dbobObl-lex & v-lex.

(35) bark_intr := v-intr-lxm &

[ORTH "bark"].

chase_tr := v-tr-lxm &
[ORTH "chase].

give_ditr := v-ditr-lxm &
[ORTH "give”].

To fully integrate the GFs in the parsing grammar, we have to propagate the value of GF from

head to mother in all syntactic rules, lexical rules and in the type word (just as we did with ACTNTS
and INDX). And rather than (10b), the declaration of sign is now (36):

(36) sign
 [HEAD pos,
 GF gramfct,
 SPR list,
 COMPS list,
 INDX index,
 ACTNTS sit,
 ARGS list]

Three analytic perspectives have now been combined. For valence, there are two perspectives, one
following the ‘satisfaction’ aspect of valence as modeled in the parsing algorithm, and one for
exposure of valence as the backbone of the sentence as a fully analyzed entity. The third perspective
exposes the meaning of the sentence as a fully analyzed entity. The latter two perspectives will be of
interest if one wants to classify construction types as such, independently of a parsing mechanism; on
this, see chapter X (on ‘enumeration’ and ‘ontology’).

4. Some prepositional and nominal constructions
In Simple grammar, nouns require a specifier but take no complements. Prepositions require a
complement but take no specifier, however they have a MOD feature by which they specify what
they can modify (in Simple grammar that being either a noun or a verb). As GF categories, the
specifier of a noun is SPEC, and the complement, or governee, of a preposition is GOV, by the
extensions made above. Semantically, prepositions are a bit like transitive verbs, with an ACT1 and
an ACT2, where ACT2 is the referent of the governee, as stated in (29). We now discuss three types
of prepositions, widely recognized as different and here differentiated amongst others according to
how their ACT1 is specified.

 15

4.1. Oblique arguments and selected prepositions.
An example of an oblique argument is John in rely on John. By general conception, an oblique
constituent Y relative to some head X is an item required by X, or required in order for X to carry the
meaning it has in the construction, where Y consists of a head Z, typically of the category
preposition, and the governee G of the preposition, where G is perceived as having a role relative to
X, and Z indicates what that role is.

 rely on John
 X Z G
 Y

Thus, in rely on John, ‘John’ is seen as having a role relative to ‘rely’, but is syntactically governed
by on, whereby it is ‘shielded’ from the verb and relates to it only ‘obliquely’. Hence G, or ‘John’, is
called an argument of X, or ‘rely’, and due to the way Z (on) mediates the argumenthood, an oblique
argument of X. (Another term used is indirect argument.) The phrase on John may at the same time
be called an ‘oblique constituent’. Prepositions like on in the present capacity are commonly called
selected prepositions.
In the lexical specification of rely, we accordingly need to specify the NP contained in the PP, since

it is the index of this NP which represents a participant relative to the verb, not the index of the PP.
With the GF GOV available for this NP, the lexical specification of rely will be as follows:

(37)

HEAD verb

SUBJ 3 INDX 1

HEAD prepGF
OBL 4

GF GOV INDX 2

SPR 3

COMPS 4

PRED rely-rel

ACTNTS ACT1 1

ACTobl 2

The preposition on itself will have the following lexical specification, when used in this
configuration:

(38)
HEAD prep

GF GOV 4 INDX 2

SPR

COMPS 4

PRED on-rel
ACTNTS ACT1 index

ACT2 2

As this is not a preposition that can be used predicatively or in a modifying function, the ACT1 is not
linked to any syntactic constituent. When (37) combines with (38), the value of the preposition’s
ACT2 is unified with the verb’s ACTobl, and in the latter capacity propagated further up in the
construction specification.

 16

4.2. Modifying PPs
The specification (38) may be compared to the specification of ‘regular’ modifying prepositions,
such as under in he sits under the table, shown in (42), chapter 1, here repeated as (39). Here, in
contrast to the preceding case, the ACT1 has a value, namely the index of the item modified. Even in
this case, the item modified will typically not be naturally associated with a GF notion like ‘subjects’
relative to the adjunct, so we will still not assume any GF attribute for this function. However, for the
valence satisfaction aspect, we provide the adjunct with the attribute MOD, standing for ‘item with
which I combine’. As a change from Simple grammar, where the attribute MOD stands inside of
HEAD, thus declared by pos, it is here declared directly by sign, as a valence feature on a par with
SPR and COMPS. The preposition under, when used in constructions like the one mentioned, will
thus have the specification (39):

(39)

HEAD

GF GOV INDX 2

HEAD verb
MOD

INDX 1

COMPS INDX 2

PRED

ACTNTS ACT1 1

ACT2 2

prep

under

For this kind of preposition, which is seen as the more general kind of preposition, the main rule of
combination is (40), combining the Adjunct with either N or VP. This contrasts with the case of rely
on John, where on John combines with rely by Head-complement-rule1. Making use of MOD as
now stipulated, (40) replaces (5c) as Head-Modifier rule I.

(40) Head-Modifier rule I:

HEAD 5

GF 1

SPR 3

COMPS

INDX 2

ACTNTS 6

5

1

3
4

2

6

4 2

1 2

HEAD

GF

SPR
HEAD DTR

COMPS

INDX

ACTNTS

MOD INDX

NONHEAD DTR COMPS

ACTNTS ACT

−

 −

Rather than (36), the declaration of sign is now (41):

 17

(41) sign
 [HEAD pos,
 GF gramfct,
 SPR list,
 COMPS list,
 MOD list,
 INDX index,
 ACTNTS sit,
 ARGS list]

We will type-refer to the preposition type in (38) as sel-prep-word (‘selected preposition’) and the
one in (39) as mod-prep-word (‘modifying preposition’).1

4.3. Directional and locative prepositions
In the representation of a directional expression, such as runs to in the boy runs to the house or
throws... through in the boy throws the ball through the window, it has to be indicated which entity
performs the directional function. As seen above, in the case of mod-prep-word, the ACT1 of the
preposition, when modifying a verb, is the event index of the verb. In contrast, in the boy throws the
ball through the window, what induces the path is 'the ball', that is, the direct object, while in the boy
runs to the house, it is the subject, i.e., 'the boy'. For these reasons, when assigning the ACT1 of a
directional preposition the correct value, we need to equate the ACT1 of the preposition with the
relevant participant of the verbal event, rather than with the event as such. We will model the present

1For convenience, the following type definitions from above are relevant for the composition of the sign (37):

(i) subj-gf := gramfct & [SUBJ sign].
obl-gf := subj-gf & [OBL sign].
subj-sign := sign & [GF subj-gf].
obl-sign := sign & [GF obl-gf].
su-act1-link := subj-sign &
 [GF.SUBJ.INDX #1,
 ACTNTS.ACT1 #1].
obl-actObl-link := obl-sign &
 [GF.OBL.GF.GOV.INDX #1,
 ACTNTS.ACTobl #1].
intr-sign := su-act1-link
intrObl-sign := obl-actObl-link.
intr-lex := intr-sign &
 [GF.SUBJ #1,
 SPR < #1 >].
intrObl-lex := intr-lex & intrObl-sign &
 [GF.OBL #1,
 COMPS < #1 >].
v- intrObl-lxm := intrObl-lex & v-lex.

Similarly, the following type definitions from above are relevant for the composition of the sign (38) ((p-lex being a
type defined as having prep as head):

(ii) gov-gf := gramfct & [GOV sign].

gov-sign := sign & [GF gov-gf].
gov-act2-link := gov-sign &
 [GF.GOV.INDX #1,
 ACTNTS.ACT2 #1].
gvmt-sign := gov-act2-link.
gvmt-lex := gvmt-sign &
 [GF.GOV #1,
 COMPS < #1 >].
p-gov-lex := gvmt-lex & p-lex.

 18

approach on the analysis of directional expressions proposed in (Jackendoff 1987), where
syntactically, the directional PP is treated as an argument of the verb, and semantically, it introduces a
structure where the governed NP is represented as an end-point, start-point or via-point (possibly
embedded in a place-structure) of a relation 'GO' or 'ORIENT' connecting the directed participant to
the end-/start-/via-point. Jackendoff's function-argument structures will not be directly reproduced
here, but with typed feature structures we will model the same content.

As a subtype of actants we introduce dir-rel, which declares an attribute DIR. The value of DIR is
act12-rel, where ACT1 is the directed entity and ACT2 is the reference point, such as the end-point,
start-point or via-point. The exact status as directed entity for ACT1 or end-, start- or via-point for
ACT2 is defined as a (subtype of) role. We model the following roles in the type hierarchy under
role:

(42)
a. Roles for ACT1:
 oriented-obj

 purely-oriented-obj mileage-obj

 path-obj locomo-instance

 locomo-event locomotor

b. Roles for ACT2:
 spatial-entity

 endpnt-of-line startpnt-of-line viapnt-of-line targetpnt-of-line

Illustrations of the roles of ACT1s in (42a) are given in (43) (leaf nodes from right to left):

(43)
a. - as a 'mover' along a path, to be called a locomotor (e.g., Ernst ran to Hamburg)
b. - as an event along a path, to be called a locomo-event (e.g., the tour went to Hamburg)
c. - as an extended object, to be called a path-obj (e.g., the road went to Hamburg)
d. - as a purely oriented object, to be called a purely-oriented-obj (e.g., the sign points to
 Hamburg)

As seen from the examples, a preposition like to can serve in all of these ACT1 roles; however,
relative to the types in (42b) reflecting possible ACT2 roles, only endpnt-of-line is a possible role for
to. Regarding verbs which can interact with the options in (42a), point goes only with a subject
having the role purely-oriented-obj, go can be used in any of the other three options, and a verb like
stroll probably only as a locomotor. The object of the transitive verb throw is necessarily a locomotor,
whereas the object of draw (like in draw the line along the edge) is a path-obj.

Reflecting these specifications, we illustrate how the salient aspects of the feature structures of stroll
and to, as in the cat strolled to the dog should look, and throw and to, as in I threw the ball to John:

 19

(44)

 a.

[]

ORTH "stroll"

HEAD verb

SPR INDX 1

HEAD prep
COMPS

INDX 2

ACT1 1
ACTNTS

DIR.K 2 ACT1 1 ROLE locomotor

 b.

[]

ORTH "throw"

HEAD verb

SPR INDX 1

HEAD noun HEAD prep
COMPS ,

INDX 2 INDX 3

ACT1 1

ACTNTS ACT2 2

DIR.K 3 ACT1 2 ROLE locomotor

 c.

[]
[]

ORTH "to"

HEAD prep

INDX 1

HEAD noun
COMPS

INDX 1

ACT1 ROLE oriented obj
ACTNTS

ACT2 1 ROLE endpnt of line

 −

 − −

ACT1 of to has the role oriented-obj, which is the highest type in the hierarchy (42a), reflecting the
fact that it can be used in all the directional types illustrated in (43). When to is combined with stroll
or throw, the specifications of these verbs force the role of the ACT1 of to be locomotor, which is a
subtype of oriented-obj, and thus compatible with the general specification of to in (c).

As the ACT1 of a directional preposition is in all cases identical to one of the arguments of the verb
(and carries the role oriented-obj), it contrasts with the ACT1 of a modifying locative preposition,
which has as its ACT1 the index of the verb itself (cf. (39)), and with the ACT1 of a selected
preposition, which is left undefined (cf. (38)).2

While (uses of) directional prepositions can be classified in terms of roles as indicated, the main
classificatory notions relevant for modifying locative prepositions are topological, like in the
following table, where ‘FIG’ is the ACT1 and ‘GROUND’ the ACT2:

3

2 When qualifying a noun, the ACT1 of both directional and modificational prepositions will be the index of that noun,
but still with distinct types of roles - the ACT1 of the directional to in a bus to Beijing will be oriented-obj, as opposed
to the ACT1 of under in the cat under the table.
3 From Hellan and Beermann 2009, building to a large extent on Trujillo 1994.

 20

 Topological features Definitions:
 (all boolean):

 FRONT FIG is in front of GRND
 BACK FIG is behind GRND
 EMBEDDED FIG is embedded in GRND
 CONTAINED FIG is contained in GRND

SCALAR Relation between FIG and GRND can be quantified (like in “2 cm behind)
 TRANSITIVE If R(A,B) and R(B,C), then R(A,C)
 UPSIDE-OF FIG is upside in a vertical relation to GRND
 DOWNSIDE-OF FIG is downside in a vertical relation to GRND
 INTEGRATED FIG is integrated into GRND

 Table 1: Main topological features

Features like these qualify the relation between the ACT1and the ACT2 rather than the role of any
one of them in particular, and so the appropriate locus for these specifications will be under the
attribute ACT0 rather than under ACT1 or ACT2. It will be introduced by a feature CLASS whose
value topology introduces these binary features. (45) illustrates this with the semantic part of the
lexical specification of behind, as in the cat sits behind the chimney:

(45)

[]
[]

PRED 'behind rel '

FRONT
BACK

ACT0 CLASS TRANSITIVE
SCALAR
INTEGRATED

ACT1 ROLE fig

ACT2 ROLE grnd

−

 −
 +
 +
 +
 −

Returning to roles, those that have now been introduced in connection with prepositions will sit in

the same over-all hierarchy as ‘agent’ etc. as discussed previously, and these hierarchies can be
merged, as partly indicated below (the dotted line down to ‘locomotor’ points to the hierarchy in
(42a)):4

(46) role

locomotor initiator noninitiator

 agent cause affected patient theme

 ag-mover
 noninit-mover

 affected-mover theme-mover

4 The roles presented in (42) constitute what we may call a ‘directional space’, whereas those introduced in the previous section, such
as agent, patient, etc., may be seen to constitute a ‘force’ space. Jackendoff 1987, 1990 devised a representation of distinct ‘tiers’ for
these spaces. In the present system, through multiple inheritance, these role types can be combined in unified hierarchies.

 21

To implement the structures now considered for directional prepositions and verbs of direction, we

define a type v-intrPath for verbs which have a directional complement, with the subtypes v-intrPath-
suMover, v-intrPath-suEvent, v-intrPath-suPath, and v-intrPath-suOrient, according to its ACT1-role
(from right to left in (42a)). V-intrPath will be a subtype of verb-lxm, defined like v-tr except that its
COMPS item is a PP and its ACTANTS has an attribute DIR rather than ACT2; (47a) induces the
structure instantiated for stroll in (44a). For transitives like throw, similarly, (47b) induces the
structure instantiated in (44b), and (47c) induces the type of preposition instantiated in (44c):

(47)
a.
v-intrPath := verb-lxm &
 [COMPS < [HEAD prep-or-adv,
 INDX #2,
 ACTANTS [ACT1 #1 & [ROLE oriented-obj]]>,
 ACTANTS act1dir-rel & [ACT1 #1,
 DIR.K #2 act12-rel & [ACT1 #1]]].

b.
v-trPath := verb-lxm &
 [COMPS < [HEAD noun,
 INDX #1], [HEAD prep-or-adv,

 INDX #2,
 ACTANTS [ACT1 #1 & [ROLE oriented-obj]]>,
 ACTANTS act12dir-rel & [ACT2 #1,
 DIR.K #2 & act12-rel & [ACT1 #1]]].

c.
dir-prep-word := p-gov-lex &
 [ACTNTS [ACT11 oriented-obj]].

The HEAD value prep-or-adv in (a) and (b) reflects the fact that the directional constituent with such
verbs combine can also be an adverb, as in run away. To induce the types act1dir-rel and act12dir-
rel, we expand the -rel –hierarchy in the same way as for the –obl extension of the –rel types (cf. (8)
above):

(48) sit
 [PRED pred,
 ACT0 index]
 / \
 act1-rel dir-rel
 [ACT1 index] [DIR index]
 / \ /
 act12-rel act1dir-rel
 [ACT2 index] /
 / \ /
 act123-rel act12dir-rel
 [ACT3 index]
 \ /
 act123dir-rel

For the sake of comparison with (47c), (49a,b) state the specifications of selected prepositions and
modifying prepositions, respectively:

 22

(49)
a. mod-prep-word := p-gov-lex &

 [MOD < [INDX #1] >,
 ACTNTS [ACT11 #1]].

b. sel-prep-word := p-gov-lex.

4.4. Relational nouns and possessive constructions
We here model combination of a noun with a possessive noun. We focus on the class of cases where
the head noun is in some sense 'predisposed' for combining with another noun, namely relational
nouns. The relevant types introduced so far are (50a-d), and we want to define (50e), a lexical type
instantiated in the lexical entry (50f):

(50)
a. (from (29)):

spec-act2-link := spec-sign & phrase &
 [INDX #2,

 GF.SPEC.INDX #1,
 ACTNTS.ACT2 #2,
 ACTNTS.ACT1 #1].

b. (from (30)):
poss-sign := spec-act2-link.

c. (from (32)):
poss-lex := poss-sign &

 [GF.SPEC #1,
 SPR < #1 >].
d. (standard HPSG):
 noun-lxm := lexeme &
 [HEAD noun,

 SPR < [] >,
 COMPS < >].
e. rel-noun-lxm := noun-lxm & poss-lex.
f. leg_relnoun := rel-noun-lxm &
 [ORTH « leg »,
 PRED leg-rel].

With these types, an NP like Mary’s leg will have the AVM structure (51), which reads something
like “leg x such that Mary ‘leg-relates’ to x”:

(51)
[]

HEAD noun
HEAD noun

SPEC INDX 2
ACTNTS PRED 'Mary '

INDX 1
PRED 'leg rel '

ACT0 1
ACTNTS

ACT1 2

ACT2 1

−

(52) renders the gross outline of a constituent structure for this phrase, with the index on each node
corresponding to the indices in (51):

 23

(52) NP [1]
 / \
 NP [2] N [1]
 | |
 Mary leg

Thus, in the ACTNTS specification of the top NP, the specifier (‘Mary’) is the ACT1 and the head
(‘leg’) the ACT2, and a relation (like 'whole-part', 'family relation', 'X's surface' etc., named in the
same way as the head) is declared as holding between ACT1 and ACT2.

This semantic analysis logically works only for those head nouns which precisely indicate a
relation that can hold between the NP referent and the specifier phrase. When this is not the case, like
in John’s house, the most one can do in the semantics is to indicate that there is some relation, but the
way to technically introduce it will be not via the lexical specification of the noun itself, but in the
combinatorial rule for the configuration. This rule will have the form (53a), distinct from and added
to (5b) (repeated for convenience of comparison); the indices are distributed on the branches as they
are in (52), but the ACTNTS specification introduced is not rooted in any of the lexical items
occurring – we may call this a combinatorially introduced semantic specification:

(53)
a. head-specifier-rule := head-final &

 [SPR < >,
 COMPS #comps,
 ACTNTS [PRED poss-rel,

 ACT1 #2,
 ACT2 #1],
 ARGS < phrase &
 #sdtr & [HEAD noun,

 SPR < >
 INDX #2],

 phrase &
 [SPR < #sdtr >,
 COMPS #comps

 INDX #1] >].

b. head-specifier-rule := head-final & (= (5b))
 [SPR < >,
 COMPS #comps,
 ARGS < phrase &
 #sdtr & [SPR < >],
 phrase &
 [SPR < #sdtr >,
 COMPS #comps] >].

(53a) retains from (53b) the assumption that the specifier NP is valence-bound by the head, which of
course makes little sense empirically.5 This is a technicality, however, in that ‘normal’ nouns will
have a list as SPEC unspecified as to whether it is empty or non-empty, thus accepting also cases
where there is no specifier.6

5Here one issue will be to distinguish between NPs acting as specifiers and determiners acting as specifiers – for English,
the latter may still be required except for bare plurals, while in a general grammar design, no spedifier requirement is
motivated. Another issue is that in English, a possessor and a head are connected by the 's attached to the possessor NP,
while many languages just combine the NP and the N directly, and still others have a separate word between. What the
above analysis models is only the direct combination strategy. Note that (53a) is for specifier NPs only, while (53b)
covers both NPs and determiners.

 To make (53b) less anglo-idiosyncratic, it too should be read with this

6 But nevertheless so that it unifies with the pattern described in (53).

 24

interpretation, so that an obligatory specifier NP is assumed only when the head noun so dictates, as
in rel-noun-lxm.

A particular case of rel-noun-lxm is arguably constituted by a large group of so-called
postpositions in many languages. These are items traditionally seen as being of the same type as
prepositions, only following rather than preceding the governee, however, in many cases they can be
shown to behave like nouns with meanings like ‘upside’, ‘underside’, etc., and thus be analyzable
rel-noun-lxm by the pattern in (51)/(52). Since these items display the same range of meanings as
locative prepositions with modifying function, they should be semantically analyzable using the
distinctions in Table 1, so that for at least these nouns, the attribute CLASS will be declared by index,
like for locative prepositions (cf. (45) above).

As for so-called ‘determiners’, these divide into classes such as articles, quantifiers,
demonstratives, and numerals, and with co-occurrence restrictions varying very much cross-
linguistically. Semantically, the analysis of quantifiers should most likely follow the lead of MRS
analysis (cf. chapter 3), whereas for articles a propagation up to the NP-node of a specification +/- of
a feature DEF (as done in LFG) may well be the more natural analysis. As our main focus here is the
analysis of verbs and verb constructions, we do not go further into the treatment of determiners in
TypeGram.

5. Morphological Causative and Applicative Formation
Among the most common valence-increasing operations across languages are Morphological
Causativization and Applicative Formation. TypeGram addresses both. The linguistic literature on
causation commonly assumes that the notion ‘cause’ has two arguments, the second of which is
necessarily a proposition, and the first of which can also be a proposition, as in ‘John’s singing
caused the room to become empty’. Our type representing the notion ‘proposition’ is here sit,7

 hence
we may define the construal of causation mentioned as follows:

(54) causation-with-causingevent := act12-rel &
 [PRED cause-rel,

 ACT1.K sit,
 ACT2.K sit].

For a construction like ‘John caused the room to become empty’, on the other hand, it may be
proposed that the ACT1 is an individual rather than a proposition. We take this option into account
by defining a further type:

(55) causation-with-causer := act12-rel &

 [PRED cause-rel,
 ACT1.K indiv,

 ACT2.K sit].

In morphological causative constructions, it is the latter construal which is relevant. In these
constructions, syntactic and semantic form generally are not ‘isomorphic’, since what in the semantic
structure will be the embedding of one proposition as argument of the predicate ‘cause’, is reflected
at syntactic level simply through the addition of one more object or oblique to the same set of GFs.

5.1. Parameters and derivation of morphological causatives
One of the main parameters of morphological causatives resides in whether the ‘caused’ event is
expressed by an intransitive or transitive verb. In the former case, the ‘subject’ of the caused event -
often referred to as the causee of the construction - is realized as an object of the verb in its derived

7 Cf. (9) above.

 25

form. If the ‘caused’ event is represented by a transitive verb, the causee may in principle end up
either as object or oblique of the derived verb, and the ‘underlying’ object also has these options,
although there will typically be at least one object.

In either case, the analysis of the morphological causative will be phrased as a derivational
process, which is technically a unary branching structure where the stem of the causative form is
represented as the daughter constituent and the causative form itself as the mother constituent; such
a constellation is generally referred to as a lexical rule, similar to an inflectional rule except that the
rules now in question derive lexemes from lexemes, while inflectional rules derive words.

The rule deriving a morphological causative from an intransitive verb stem can be given the
definition (56), deriving a transitive construction with an individual as causer (stated through the
specification ‘ACTANTS causation-with-causer’) and the causee expressed as object (‘trCs’ standing
for ‘transitive formed by Causativization’); the CAUS-DERIVED feature is for forestalling possible
iteration of the rule. For the affixation itself, suppose that we are for now working with a ‘bantoid’
version of English, where verb stems and tense inflections are as in English, but verb extension
affixes are used for Causativization, Applicatives and Passive, string-realized as CAUS, APPL and
PASS, respectively, so that the grammar will produce instances of the string chaseCAUS, where
CAUS is added to the stem chase by a lexical rule.

(56)
v-trCs_lrule := obj-sign &
 [ORTH #4+”CAUS”
 GF.SUBJ.INDX #1,
 GF.OBJ.INDX #2,
 ACTANTS causation-with-causer &
 [ACT1 #1,
 ACT2.K act1-rel & #3 & [ACT1 #2]],
 LEXEME +,
 CAUS-DERIVED +,
 ARGS < [ORTH #4

 HEAD verb,
 COMPS <>,
 GF.SUBJ.INDX #2,
 CAUS-DERIVED -,
 ACTANTS #3] >].

When the caused event has more than one participant, the construction has to provide a GF both for
the causee and for the other participant(s), and here languages will differ as to whether both/all
become objects, or one of them becomes object and the other(s) oblique, and in the latter case,
which of them becomes what. (See Kroeger 2004 for a presentation of some principles and
strategies at work here.) Below is a sign for a two-participant caused event where the causee is
realized as OBJ and the other participant as OBJ2. This we refer to as a ‘double object construction’,
referring to the two objects as ‘first object’ and ‘second object’. The sign type here in question may
be called dbobCs-sign, and to precisely indicate which ‘underlying’ GFs become realized as what,
we add the specification obCsu-ob2Cob, which means: object is derived by Causativization from
subject, and object2 is derived by Causativization from object: 8

8 The two other conceivable realizations will correspondingly receive the types oblCsu-obCob for when the causee is
expressed as oblique and the other participant of the caused event as (direct) object, and obCsu-oblCob
for when the causee is expressed as object and the other participant of the caused event as oblique.

 26

(57)

2

ORTH 4 " "

SUBJ INDX 1

GF OBJ INDX 2

OBJ2 INDX 3

PRED cause_rel

ACT1 1ACTANTS
ACT1 2

ACT2 K 6
ACT2 3

CAUS-DERIVED +

ORTH

ARGS

dbobCs obCsu ob Cob

CAUS

− −

+

4

SUBJ INDX 2
GF

OBJ INDX 3

ACTANTS 6

Also here the derivational rule attaches the causative morpheme. An alternative is to let only
inflectional rules perform affixation, and thus use an inflection rule to integrate the addition of
‘CAUS’. With a specification like CAUS-DERIVED + available in the output, this could be used as
the defining licenser, and the inflectional rule would be (58), parsing, in the mock-style language,
The woman barkCAUS the dog.

(58) verb-CAUS_irule :=

%suffix (* CAUS)
word &
[ARGS < verb-lxm & [CAUS-DERIVED +]>].

While the approach in (56) and (57) would carry the standard predictions of the ‘mirror principle’
(see Kroeger op. cit.), by which the affix attached by a ‘later’ rule comes farther from the root than
the affix attached by an ‘earlier’ rule (if they both attach their affixes on the same side of the root),
the approach using (58) is not constrained by this prediction. We will not go into assessing this issue
here, but move on to the next type of derivational process.

5.2. Applicatives and chaining of derivations
Below is an example of an Applicative, showing a transitive construction formed (from ‘intransitive
oblique’) through Applicative formation. We label the construction trAp-obAobl, in accordance with
the conventions just introduced, where obAobl indicates that the object is 'promoted' from oblique.

(59) (Ex. Citumbuka, by Jean Chavula, pc)

Temwani wa-gon-er-a mphasa
Temwani 1SM-sleep-Ap-Fv 9mat
'Temwani has slept on a mat'

For similar reasons as for Causatives, we may want to construe this as produced by a derivation.
Unlike the case of Causative, the process here involved may be assumed to be meaning preserving.
Analogously to above, we introduce a feature ‘APPL-DERIVED bool’, and let an inflectional rule
affixing APPL be dependent on a positive specification, called verb-APPL_irule, analogous to verb-
CAUS_irule.

 27

To illustrate the derivation of a double object construction in our mock-English universe, a natural
English verb of type trObl might be tell (as in tell John about Susan), and an ‘applied’ version could
be ‘Mary tellAPPL Susan John’, illustrating the type dbobAp-obAobl.

Consider then an interaction between Causativization and Applicative, again using an example
from Citumbuka, illustrating a case where a sequence of applications of first the Applicative rule
dbobAp-obAobl_lrule, and then an application of Causativization, produce a verb construction of
type ditrOblCsAp-oblCsu_obCob2Aobl_ob2Cob (= ‘ditransitive-plus-oblique construction produced
by Causativization preceded by Applicative’ - the label reflecting the order of ‘peeling off’ one
process after the other, starting from the result – and mentioning only the GF-changing mappings).
The constituent label oblCsu here says that the oblique is derived by Causativization from
underlying subject, obCob2Aobl says that the first object is 'promoted' by Causativization from obj2,
before that promoted by Applicative from underlying oblique, and ob2Cob says that the second
object is derived by Causativization from underlying object:

(60) (Ex.Citumbuka, by Jean Chavula, pc)
 Tumbikani wakamuphikiskira Temwa nchunga kwa Mary
 Tumbikani wa-ka-mu-phik-isk-ir-a Temwa nchunga kwa Mary
 Tumbikani 1SM-pst-1OM-cook-Caus-Appl-fV Temwa beans 'to' Mary
 'Tumbikani made Mary cook beans for Temwa'

The resulting pattern expresses a causation with a person-causer, a three-actant caused event, and
the ACT1 of the caused event (the causee) expressed as oblique and the ACT2 of the caused event as
second object, whereas ACTobl of the caused event (labelled according to its ‘pre-applicative’
status), takes the position of first object. This is represented in (61), and (62) adds the derivational
history:

(61)

SUBJ INDX 1

OBJ INDX 3
GF

OBJ2 INDX 2

OBL GOV INDX 4

PRED cause

ACT1 1
ACTNTS ACT1 4

ACT2 ACT2 2

ACTobl 3

 28

(62)

_ 2 _ 2

SUBJ INDX 1

OBJ INDX 3
GF

OBJ2 INDX 2

OBL.GF GOV INDX 4

PRED cause

ACT1 1
ACTNTS ACT1 4

ACT2.K 5 ACT2 2

ACTobl 3

ditrOblCsAp oblCsu obCob Aobl ob Cob−

SUBJ INDX 4

GF OBJ INDX 2

OBJ2 INDX 3

ARGS ACTNTS 5

SUBJ INDX 4

GF OBJ INDX 2
ARGS

OBL.GF.GOV INDX 3

ACTNTS 5

In this example, the causative morpheme precedes the applicative morpheme, both affixes being to
the right of the root, which by the ‘mirror principle’ would suggest that Causativization has applied
first, contrary to the analysis given. If the latter is correct, this case would thus count in favour of
using inflectional rules for attaching the affixes, as suggested above – cf. the inflectional rule (58) –
but there is probably room for exploring the opposite rule ordering, so we make no conclusion here.
But we may note that in another example of chaining of derivations discussed in chapter 1, section
2, the proposed order of rule applications depicted in (9), chapter 1, does conform to the mirror
principle – the example (10) from chapter 2 is repeated as (63),

(63) (example of (10), from Kiswahili, based on Vitale, 1981:165, quoted in Kroeger, 2004,
 p.196, ex. (11a))

 mke wake a-li-pi-ish-w-a uji na Sudi
 wife his S.agr-PAST-cook-CAUS-Pass-Ind gruel by Sudi
 ‘His wife was made to cook gruel by Sudi’

with the analysis largely repeated as (64) (note that the ‘input’ is here introduced by the attribute
DTR taking a sign as value rather than ARGS taking as value a list consisting of one sign – these are
equivalent representations):

(64) Verb derived by morphological causative and subsequently passive:

 29

2

HEAD 8

SUBJ INDX 2
GF

OBJ INDX 3

ACTNTS 7

HEAD 8

SUBJ INDX 1

GF OBJ INDX 2

OBJ2 INDX 3

PRED -

ACT1 1

PRED
DTR ACTNTS 7

ACT2 K 6

v trPsCs suPobCsu obPob Cob

verb

cause rel

c

− − −

ACT1 2

ACT2 3

TENSE

HEAD 8

SUBJ INDX 2
DTR GF

OBJ INDX 3

ACTNTS 6

ook rel

past

 −

The type of the verb in this case is:

(65) v-trPsCs-suPobCsu-obPob2Cob

where trPsCs labels a transitive argument structure derived through morphological causativization
followed by passive formation, and the sequence suPobCsu-obPob2Cob means that Subj is derived
by passive from underlying Obj, in turn derived from underlying Subj, and that Obj is derived by
passive from underlying Obj2, in turn derived from underlying Obj. The sequence suPobCsu thus
corresponds to the AVM segment

GF.SUBJ.INDX 2
DTR.GF.OBJ.INDX 2
DTR.DTR.GF.SUBJ.INDX 2

and could in principle be derived from it, as a compact declaration of this part of the overall AVM.
A large set of possible combinations of ‘extensions’ of this kind can be defined in this code, as laid
out in chapter X, section Y.

6. Serial Verb Constructions.
6.1. SVCs as adjunction structures
In our comments on SVCs in chapter 2, sections 4.3 and 5, we mentioned that one proposal is to
treat it as a kind of adjunction, with the first VP as head and the second as an adjunct. One argument
for this analysis is that the second verb fills no valence requirement of the first verb – in general in
SVCs, both verbs are free to occur by themselves, i.e., as heads in non-serial verbal constructions.
That a head-complement relation can thereby be argued against, of course does not mean that a
head-adjunct analysis is by the same token vindicated – whether the ‘standard’ functional relations
from languages lacking multiverb constructions are sufficient to accommodate, e.g., SVCs, is indeed
a crucial question. Still, this is the basis on which we frame our current analyses.

 30

First of all, to technically allow for a head-adjunct analysis of SVCs, we need to give verbs in
general the possibility of modifying other verbs; while unexpected from the viewpoint of European
languages, there is no problem connected to this move. Otherwise the following remarks apply.

As noted at the end of chapter 2, section 5 for cases of object sharing and switch sharing, since
the relevant COMPS lists of the daughter VPs will be empty at that stage of combination where
identities must be be assessed, the object-related requirements have to be imposed on the path
GF.OBJ, since only the GF information is propagated unchanged up through the combination tree.
In cases of object sharing, moreover, the second VP will typically be one where a transitive verb
occurs without its object. Thus, the analysis of these constructions not only requires a way of
assigning identities, but also a way of accounting for ‘missing’ objects. The most obvious strategy
for the latter will be a ‘de-transitivizing’ rule, which applies only inside of the second VP in an
SVC. The operation stated in (66b) below does that, as an operation turning a transitive lexeme into
an intransitive one, and the way in which this operation gets related to the VP’s participation in an
SVC is through its MOD specification, which stipulates that this happens only when the VP in
question follows another VP whose object is identical to the object of the VP in question.

This strategy of referencing a preceding VP through the MOD attribute is used also in (66a) and
(66c), then ‘deleting’ the subject under a stipulated identity with the appropriate item in the
preceding VP. This item is the subject in (66a) (‘subject sharing’), and the object (‘switch sharing’),
in (66c). When an SVC displays both subject sharing and object sharing, both (a) and (c) will apply.

 (66)
a. b. c.

HEAD verb
SPR

COMPS 2

HEAD verb

MOD SPR 1

GF SUBJ 1

GF 5 SUBJ 1

ACTNTS 4

HEAD verb

SPR 1

ARGS COMPS 2

GF 5

ACTNTS 4

subj sharing rule− −

HEAD verb

SPR 2
COMPS

HEAD verb
MOD

GF OBJ 1

GF 5 OBJ 1

ACTNTS 4

HEAD verb

SPR 2

ARGS COMPS 1

GF 5

ACTNTS 4

obj sharing rule− −

HEAD verb
SPR

COMPS 2

HEAD verb
MOD

GF OBJ 1

GF 5 SUBJ 1

ACTNTS 4

HEAD verb

SPR 1

ARGS COMPS 2

GF 5

ACTNTS 4

switch sharing rule− −

In (67) below, the same patterns are repeated for cases where the relevant items are not deleted,
but appear as pronouns (cliticized or not) – in such cases we will speak of reference sharing.

 31

(67)
a. b. c.

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

GF.SUBJ.INDX 1

HEAD pron
GF 5 SUBJ

INDX 1

ACTNTS 4

HEAD verb

SPR 2

ARGS COMPS 3

GF 5

ACTNTS 4

subj ref sharing rule− − −

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

GF.OBJ.INDX 1

HEAD pron
GF 5 OBJ

INDX 1

ACTNTS 4

HEAD verb

SPR 2

ARGS COMPS 3

GF 5

ACTNTS 4

obj ref sharing rule− − −

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

GF.OBJ.INDX 1

HEAD pron
GF 5 SUBJ

INDX 1

ACTNTS 4

HEAD verb

SPR 2

ARGS COMPS 3

GF 5

ACTNTS 4

switch ref sharing rule− − −

A similar set of rules can be made to constitute what we may call the TAM-sharing cluster, where
again more than one of the rules can apply ((68)). (Most of the material in these specifications can
be stated in a super-type of these rules, but for convenience of inspection we assemble the all
information in one AVM in each case.)

(68)
a. b. c.

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

ACTNTS.ASPECT 5

ACTNTS 4 ASPECT 5

HEAD verb

SPR 2
ARGS

COMPS 3

ACTNTS 4

aspect sharing rule− −

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

ACTNTS.TENSE 5

ACTNTS 4 TENSE 5

HEAD verb

SPR 2
ARGS

COMPS 3

ACTNTS 4

tense sharing rule− −

HEAD verb

SPR 2

COMPS 3

HEAD verb
MOD

ACTNTS.MOOD 5

ACTNTS 4 MOOD 5

HEAD verb

SPR 2
ARGS

COMPS 3

ACTNTS 4

mood sharing rule− −

These rules, combined with the general Head-Modifier Rule for the point where one VP
combines with another, will be adequate for parsing most known patterns of SVCs, and of any
length, since what is the head of one adjunct can be an adjunct of another VP. Assuming that SVCs
are composed of binary branching structures, thus, the rules given constitute recursive mechanisms
for verb sequences of any length.9

9 Stipulations in the combination mechanism can regulate whether in such structures of iterated adjunctions, the over-all
branching will be leftwards or rightwards. Empirical evidence for what is to be preferred may come from ‘movement’ or

 32

6.2. Formal type-assignment to SVCs
While actual parsing of the various types of SVCs is essential to the present grammar, classification
is also essential. In the previous section we mentioned type labels like the one entered in (65) for
derived verb forms; such labels are useful as terms for classification of derived verb types, and we
will want a similar system for classifying SVCs. Grammar-technically, SVCs are sentence level
entities, and in classifications like tree-banking, for instance, the basis for classification is the set,
and order, of rules taking part in the derivation of a sentence. What will be relevant here are only
those rules directly relevant to SVCs, and to make them ‘visible’ for classification purposes they
should preferably be reflected at the top AVM of the derivational tree, just like GFs and verb types
(verbs being heads, their types are in general propagated to this level). The operations of the rules in
(66), (67) and (68) are restricted to adjuncts, from which their type labels will not in the standard
case propagate up the head projection. However, in the reference made by each rule to the head
through the MOD feature, a specification can be induced to that head VP, so that in each VP+VP
combination, the head VP, and thus also the mother VP, can carry the specification. This
specification will have the rule name of the relevant rule in (66)-(68) with sv- prefixed. Thus, rule
(66a) will have the fuller formulation (69), and correspondingly for the other rules, as summarized
in (70):

(69)

HEAD verb
SPR

COMPS 2

HEAD verb
MOD SPR 1

GF SUBJ 1

GF 5 SUBJ 1

ACTNTS 4

HEAD verb

SPR 1

ARGS COMPS 2

GF 5

ACTNTS 4

subj sharing rule

sv subj sharing

− −

− −

(70) Types assigned to mother- and adjunct VP-nodes in SVC syntactic combination trees:

 VP VP VP VP
 sv-subj-sharing sv-obj-sharing sv-switch-sharing sv-subj-ref-sharing
 / \ / \ / \ / \
 VP VP VP VP
 subj-sharing-rule obj-sharing-rule switch-sharing-rule subj-ref-sharing-rule

‘gapping’ possibilities involving sequences of VPs while leaving other VPs unaffected, but we will not go into facts
from any single language here. (Intuitively, either construal is probably acceptable.)

 33

VP VP VP VP VP
sv-obj-ref-sharing sv-switch-ref-sharing sv-aspect-sharing sv-tense-sharing sv-mood-sharing
/ \ / \ / \ / \ / \
 VP VP VP VP VP
 obj-ref-sharing-rule switch-ref-sharing-rule aspect-sharing-rule tense-sharing-rule mood-sharing-rule

To accommodate multiple operations, the following type unifications are in turn declared, meaning
that if the last VP in a VP+VP combination for instance has undergone both subj-sharing-rule and
obj-sharing-rule, the mother VP will have the type sv-subj-obj-sharing, whereby both rule
applications are recorded in the AVM:

(71) Some type hierarchies:

sv-subj-sharing sv-obj-sharing sv-subj-sharing sv-obj-ref-sharing sv-subj-ref-sharing sv-obj-ref-sharing
 \ / \ / \ /
 sv-subj-obj-sharing sv-subj-obj-ref-sharing sv-subj-ref-obj-ref-sharing

sv-aspect-sharing sv-tense-sharing sv-mood-sharing [sv-aspect-sharing]
 \ / \ / \ /
 sv-aspect-tense-sharing sv-tense-mood-sharing sv-aspect-mood-sharing
 \ /

sv-aspect-tense-mood-sharing
sv-subj-sharing sv-aspect-sharing

\ /
sv-subj-aspect-sharing … etc.

For binary SVCs, these type specifications will ensure that the top S-node of the structure carries a
type among those defined in (71) (or the indicated extensions of it), thereby providing a
classificatory specification for the SVC.

For SVCs with three or four verbs, these classifications are not relevant, since the types in (71)
only indicate the relationship between two adjacent VPs. If V1 and V2 in an SVC have a certain
sharing relationship R1 but V2 and V3 have another – R2 -, then we do not yet have a way of
counting R1 and R2 together, if we wish to have a top level display of the whole sequence in
something like a single specification. Since a common way of analytically navigating inside an SVC
is indeed by reference to ‘V1’, ‘V2’, ‘V3’, etc., it will be desirable to bring these labels out as equal-
level attributes in the AVM of an SVC, and from this vantage point also summarize in one sequence
the salient relations between the various VPs.

No verb by itself could reasonably be lexically classified as ‘first svc-verb’, ‘second svc-verb’,
etc., since any verb can occur at any place in a sequence, and by itself. Hence, if we want attributes
like ‘V1’, ‘V2’, etc. to appear in the feature structure of an SVC, they have to be introduced in the
course of the combinations. To this end, a rule like (69) can be recast as (72a), where the labels ‘V1’
and ‘V2’ are brought into play for subject-sharing, and in (72b) correspondingly for switch-sharing.
The rules in (72) both inherit from head-modifier-phrase and sv (see (73b)). An instantiation of
(72b) is shown in (46) in chapter 1.10

10The effect described in addition needs to be propagated from the highest VP node to the S node, by the following
addition to the Head-Specifier Rule already established (in (5)):

 34

(72) a.

[] []

V1 1

V2 2

ARGS 1 , 2

sv subj sharing phrase

sv subj sharing subj sharing rule

− − −

 − − − −

 b.

[] []

V1 1

V2 2

ARGS 1 , 2

sv switch sharing phrase

sv switch sharing switch sharing rule

− − −

 − − − −

In (73) below is defined a set of types for characterizing SVCs. (73a) is a set of verb types that can
be added to what we have already developed in section 3, to be used further in (73b,c). The types in
(b) are those that introduce the labels ‘V1’ and ‘V2’ explicitly, and make characterizations of
identities across the VPs in an SVC. The types in (c) are for characterizing the valence of the
component VPs of an SVC. These types are all purely classificatory, in that they reflect information
expressed in an AVM, but do not ‘drive’ the parsing process or add to the coverage of the grammar.

(73)
a.
vp := phrase & [HEAD verb,
 COMPS < >].
v-sign := syn-struc & [HEAD verb].
v-word := word & v-sign.
v-intr-sign := intr-sign & v-sign.
v-intrObl-sign := intrObl-sign & v-sign.
v-tr-sign := tr-sign & v-sign.
v-trObl-sign := trObl-sign & v-sign.
v-ditr-sign := ditr-sign & v-sign.
v-dbob-sign := dbob-sign & v-sign.

(i)

[]

V1 1

V2 2

ARGS HEAD noun , V1 1

V2 2

svc subj sharing phrase

subj sharing rule

− − −

 − −

Note that rules like (i) and (72) display only V1 and V2, not V3 or V4 or higher. Technically, however, in the
constellation (ii)

(ii) V1
V1

V2
V2

the path V2.V2 can be interpreted as V3, and similarly for the higher numbers.

 35

v-ditrObl-sign := ditrObl-sign & v-sign.
v-dbobObl-sign := dbobObl-sign & v-sign.
v-trCs-sign := trCs-sign & v-sign.
v-dbobCs-sign := dbobCs-sign & v-sign.
v-trOblCs-oblCsu-sign := trOblCs-oblCsu-sign & v-sign.
v-trOblCs-obCsu-sign := trOblCs-obCsu-sign & v-sign.

b.
sv := syn-struc &
 [V1 v-sign,
 V2 v-sign].
sv3 := sv &
 [V3 v-sign].
sv4 := sv3 &
 [V4 v-sign].
sv_suIDALL := sv &
 [V1.GF.SUBJ #1,
 V2.GF.SUBJ #1].
sv3_suIDALL := sv3 & sv_suID &
 [V2.GF.SUBJ #1,
 V3.GF.SUBJ #1].
sv4_suIDALL := sv4 & sv3_suID &
 [V3.GF.SUBJ #1,
 V4.GF.SUBJ #1].
sv_obIDALL := sv &
 [V1.GF.OBJ #1,
 V2.GF.OBJ #1].
sv3_obIDALL := sv3 & sv_obID &
 [V2.GF.OBJ #1,
 V3.GF.OBJ #1].
sv4_obIDALL := sv4 & sv3_obID &
 [V3.GF.OBJ #1,
 V4.GF.OBJ #1].
sv_aspIDALL := sv &
 [V1.ASPECT #1,
 V2.ASPECT #1].
sv3_aspIDALL := sv3 & sv_aspID &
 [V2.ASPECT #1,
 V3.ASPECT #1].
sv4_aspIDALL := sv4 & sv3_aspID &
 [V3.ASPECT #1,
 V4.ASPECT #1].
sv_suObIDALL := sv_suID & sv_obID.
sv3_suObIDALL := sv3_suID & sv3_obID.
sv4_suObIDALL := sv4_suID & sv4_obID.
sv_suAspIDALL := sv_suID & sv_aspID.
sv3_suAspIDALL := sv3_suID & sv3_aspID.
sv4_suAspIDALL := sv4_suID & sv4_aspID.
sv_suObAspIDALL := sv_suObID & sv_aspID.
sv3_suObAspIDALL := sv3_suObID & sv3_aspID.

 36

sv4_suObAspIDALL := sv4_suObID & sv4_aspID.

c.
v1intr := sv &
 [V1 v-intr-sign].
v2intr := sv &
 [V2 v-intr-sign].
v3intr := sv3 &
 [V3 v-intr-sign].
v4intr := sv4 &
 [V4 v-intr-sign].
v1tr := sv &
 [V1 v-tr-sign].
v2tr := sv &
 [V2 v-tr-sign].
v3tr := sv3 &
 [V3 v-tr-sign].
v4tr := sv4 &
 [V4 v-tr-sign].
v1ditr := sv &
 [V1 v-ditr-sign].
v2ditr := sv &
 [V2 v-ditr-sign].
v3ditr := sv3 &
 [V3 v-ditr-sign].
v4ditr := sv4 &
 [V4 v-ditr-sign].

This type apparatus will allow for type characterizations like (74), (a) for a three-VPs SVC with
subject and aspect sharing and V1 and V2 being transitive and V3 intransitive, (b) for a two-VPs
SVC with switch sharing (‘v1obIDv2Su ‘ meaning that V1’s object is identical to V2’s subject) and
aspect sharing, and (c) for a two-VPs SVC with subject-, object- and aspect sharing:

(74) a. sv3SuAspIDALL-v1tr-v2tr-v3intr
 b. svAspIDALL- v1tr-v2tr-v1obIDv2Su

c svSuObAspIDALL

Instances of these are the following:

(75) For (74a): Á-gbele gbɛ á-ha bo

3.PRF-open road 3.PRF-give 2S
V N V Pron
‘You have been granted permission.’

For (74b): Kofi to-o ne nan wɔ-ɔ Kwame

Kofi throw-PERF 3Poss leg pierce-PERF Kwame
N V Pron N V N
‘Kofi kicked Kwame’

 37

For (74c): Ama tu-u bayerε twitwa noa di-i
 Ama uproot-PERF yam cut cook eat-PERF
 N V N V V V
 ‘Ama uprooted (tuber of) yam, cut it in pieces, boiled them (and) ate’

Contrary to types like (66) which reflect valence frames of verbs and thereby determine the

parsing process of sentences containing the verbs, types like those in (74) cannot be associated with
any particular verb of a given sentence, and thereby will not play a role in a parser, except as a type
which can be associated with the parse result for a given sentence for classificatory purposes. This
theme will be developed in chapter XX.

Our inventory of top level attributes in the type sign (i.e., attributes declared by sign) is now (76),
compared to (10a) at the start of the chapter, and the types sign, gramfct, semarg, aspect and sit,
together with their hierarchies and attributes declared by them, and so on, have in turn been added,
via the stages recorded in (10b), (36) and (41).

(76) sign

[V1 sign,
 V2 sign,

 HEAD pos,
 SPR *list*,
 COMPS *list*,
 MOD *list*,
 GF gramfct,
 INDX semarg,
 ASPECT aspect,
 ACTNTS sit,
 ARGS *list*,
 LEXEME bool,
 CAUS-DERIVED bool,
 APP-DERIVED bool].

	3. Grammatical Functions
	In the representation of a directional expression, such as runs to in the boy runs to the house or throws... through in the boy throws the ball through the window, it has to be indicated which entity performs the directional function. As seen above, i...
	As a subtype of actants we introduce dir-rel, which declares an attribute DIR. The value of DIR is act12-rel, where ACT1 is the directed entity and ACT2 is the reference point, such as the end-point, start-point or via-point. The exact status as direc...
	(42)
	a. Roles for ACT1:
	oriented-obj
	purely-oriented-obj mileage-obj
	path-obj locomo-instance
	locomo-event locomotor
	b. Roles for ACT2:
	spatial-entity
	endpnt-of-line startpnt-of-line viapnt-of-line targetpnt-of-line
	a. - as a 'mover' along a path, to be called a locomotor (e.g., Ernst ran to Hamburg)
	b. - as an event along a path, to be called a locomo-event (e.g., the tour went to Hamburg)
	c. - as an extended object, to be called a path-obj (e.g., the road went to Hamburg)
	d. - as a purely oriented object, to be called a purely-oriented-obj (e.g., the sign points to Hamburg)
	As seen from the examples, a preposition like to can serve in all of these ACT1 roles; however, relative to the types in (42b) reflecting possible ACT2 roles, only endpnt-of-line is a possible role for to. Regarding verbs which can interact with the o...
	Reflecting these specifications, we illustrate how the salient aspects of the feature structures of stroll and to, as in the cat strolled to the dog should look, and throw and to, as in I threw the ball to John:
	(44)
	c.
	ACT1 of to has the role oriented-obj, which is the highest type in the hierarchy (42a), reflecting the fact that it can be used in all the directional types illustrated in (43). When to is combined with stroll or throw, the specifications of these ver...
	As the ACT1 of a directional preposition is in all cases identical to one of the arguments of the verb (and carries the role oriented-obj), it contrasts with the ACT1 of a modifying locative preposition, which has as its ACT1 the index of the verb its...
	While (uses of) directional prepositions can be classified in terms of roles as indicated, the main classificatory notions relevant for modifying locative prepositions are topological, like in the following table, where ‘FIG’ is the ACT1 and ‘GROUND’ ...
	Topological features Definitions:
	(all boolean):
	FRONT FIG is in front of GRND
	BACK FIG is behind GRND
	EMBEDDED FIG is embedded in GRND
	CONTAINED FIG is contained in GRND
	SCALAR Relation between FIG and GRND can be quantified (like in “2 cm behind)
	TRANSITIVE If R(A,B) and R(B,C), then R(A,C)
	UPSIDE-OF FIG is upside in a vertical relation to GRND
	DOWNSIDE-OF FIG is downside in a vertical relation to GRND
	INTEGRATED FIG is integrated into GRND
	Table 1: Main topological features
	Features like these qualify the relation between the ACT1and the ACT2 rather than the role of any one of them in particular, and so the appropriate locus for these specifications will be under the attribute ACT0 rather than under ACT1 or ACT2. It will...
	(45)
	Returning to roles, those that have now been introduced in connection with prepositions will sit in the same over-all hierarchy as ‘agent’ etc. as discussed previously, and these hierarchies can be merged, as partly indicated below (the dotted line do...
	(46) role
	locomotor initiator noninitiator
	agent cause affected patient theme
	ag-mover
	noninit-mover
	affected-mover theme-mover
	To implement the structures now considered for directional prepositions and verbs of direction, we define a type v-intrPath for verbs which have a directional complement, with the subtypes v-intrPath-suMover, v-intrPath-suEvent, v-intrPath-suPath, and...
	(47)
	a.
	v-intrPath := verb-lxm &
	[COMPS < [HEAD prep-or-adv,
	INDX #2,
	ACTANTS [ACT1 #1 & [ROLE oriented-obj]]>,
	ACTANTS act1dir-rel & [ACT1 #1,
	DIR.K #2 act12-rel & [ACT1 #1]]].
	b.
	v-trPath := verb-lxm &
	[COMPS < [HEAD noun,
	INDX #1], [HEAD prep-or-adv,
	INDX #2,
	ACTANTS [ACT1 #1 & [ROLE oriented-obj]]>,
	ACTANTS act12dir-rel & [ACT2 #1,
	DIR.K #2 & act12-rel & [ACT1 #1]]].
	c.
	dir-prep-word := p-gov-lex &
	[ACTNTS [ACT11 oriented-obj]].
	The HEAD value prep-or-adv in (a) and (b) reflects the fact that the directional constituent with such verbs combine can also be an adverb, as in run away. To induce the types act1dir-rel and act12dir-rel, we expand the -rel –hierarchy in the same way...
	For the sake of comparison with (47c), (49a,b) state the specifications of selected prepositions and modifying prepositions, respectively:
	(49)
	a. mod-prep-word := p-gov-lex &
	[MOD < [INDX #1] >,
	ACTNTS [ACT11 #1]].
	b. sel-prep-word := p-gov-lex.
	(51)
	6. Serial Verb Constructions.

